Die Stabilitätskonstante K des Ni R_2 -Komplexes bestimmten wir durch Auswertung der *Job*-Kurve einer Mischungsreihe mit der Bedingung (9)¹):

$$[ZnR_2] + [Ni^{2+}] = 10^{-5}$$
(9)

In Fig. 1 ist die Abhängigkeit der Geschwindigkeit von Reaktion (5) von der Cu²⁺-Totalkonzentration dargestellt. Die NiR₂-Ausgangskonzentration betrug immer $2.5 \cdot 10^{-5}$.

Die verwendeten Perchlorate $Cu(ClO_4)_2$ und Ni $(ClO_4)_2$ enthielten wechselnde Mengen Kristallwasser. Wir bestimmten den Cu²⁺⁻ bzw. den Ni²⁺⁻Gehalt durch Titration mit Komplexon III⁷).

Das Kaliumsalz der Dithiocarbaminsäure erhielten wir in Alkohol aus der Säure durch Umsetzung mit einer alkoholischen KOH-Lösung bei 0° . Diese Lösung wurde etwas eingedampft und das Kaliumsalz mit Äther ausgefällt. Bei der Darstellung des Arsensalzes hielten wir uns an die in der Literatur vorliegende Vorschrift⁸).

Alle Versuche wurden bei $22\pm2^{\rm o}$ in 0,1-molarer Lösung von NaClO4 in Methylcellosolve durchgeführt.

Dem Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung danken wir für einen Beitrag an die Kosten unserer Untersuchungen.

SUMARY.

The exchange reaction of Ni(II)N,N-di-propyl-dithiocarbamate with Cu^{2+} in methylcellosolve has been studied. The actual exchange reaction is much faster than the dissociation of the Ni(II)-complex. It is therefore assumed that the metal-ion exchange is brought about through direct collision of Ni(II)NN-di-propyl-dithiocarbamate with Cu^{2+} .

> Anstalt für anorganische Chemie der Universität Basel.

⁷) G. Schwarzenbach, Die komplexometrische Titration, Stuttgart 1955.

8) L. Malatesta, Gazz. chim. ital. 69, 628 (1939).

233. Zur Kenntnis der Sesquiterpene und Azulene.

119. Mitteilung¹).

Azulenaldehyde und Azulenketone: Bathochrome Verschiebungen durch sterische Hinderung der Resonanz

von E. Heilbronner und R. Gerdil.

(6. X. 56.)

In der vorliegenden Abhandlung wurde versucht, über jene sterischen Verhältnisse Aufschluss zu erhalten, die die Konjugation zwischen Azulenkern und Carbonylgruppe in 1-Azulyl-ketonen beeinflussen. Zu diesem Zweck schien, in Anlehnung an die vor allem von

1) 118. Mitt.: W. Simon, G. Naville, H. Sulser & E. Heilbronner, Helv. 39, 1107 (1956).

E. A. Braude und seinen Mitarbeitern gesammelten Erfahrungen²)³), die Bestimmung und Deutung der Absorptionsspektren der betreffenden Verbindungen die aufschlussreichste Methode darzustellen.

An dieser Stelle soll nun über die so erhaltenen experimentellen Ergebnisse und vor allem über gewisse Folgerungen bezüglich jener Theorie, die der Auswertung zu Grunde liegt, eingehend berichtet werden.

Spektroskopische Untersuchungen.

Die in den Fig. 1 bis 5 und in den Tab. I, II und III vereinigten experimentellen Daten beziehen sich auf die folgenden sieben Azulenketone, deren Darstellung von *Pl. A. Plattner, A. Fürst & K. Zimmermann* beschrieben wurde⁴) und die uns in grosszügiger Weise von Herrn Prof. Dr. *Pl. A. Plattner* zur Verfügung gestellt worden sind: 1-Acetyl-azulen (I), 1-Methyl-3-acetyl-azulen (II), 2-Methyl-1-acetylazulen (III)⁵), 3-Acetyl-guaj-azulen (IV), 3-Benzoyl-guaj-azulen (V), 1,3-Diacetyl-azulen (VI) und 2-Methyl-1,3-diacetyl-azulen (VII)⁶).

²) E. A. Braude & E. S. Waight, "The Relationship between the Stereochemistry and Spectroscopic Properties of Organic Compounds" in: W. Klyne, Progress in Stereochemistry, Band I, S. 126, London 1954.

³) E. A. Braude, Experientia 11, 457 (1955).

4) Pl. A. Plattner, A. Fürst & K. Zimmermann, unveröffentlichte Arbeiten, beschrieben in: K. Zimmermann, Dissertation Eidg. Technische Hochschule, Zürich 1953.

⁵) Diese Verbindung wurde nach einer Methode, die von derjenigen die Pl. A. Plattner, A. Fürst & K. Zimmermann⁴) angegeben haben, etwas abweicht, neu dargestellt, worüber im Zusammenhang mit den polarographischen Messungen berichtet werden soll.

⁶) Betreffend die Zuordnung der Strukturen IV und VII zu den entsprechenden Verbindungen, vgl. Seite 2008 und die nachfolgende Arbeit dieser Reihe.

Absorptionsspektren im sichtbaren Spektralbereich des 1-Acetyl-azulens (I), 1-Methyl-3-acetyl-azulens (II) und des 2-Methyl-1-acetyl-azulens (III). cH = Lösung in Cyclohexan, F = Lösung in Feinsprit. Die einzelnen Spektren sind entlang der Ordinate wie folgt verschoben:

I: M = 600, II: M = 300, III: M = 0.

Fig. 2.

Absorptionsspektren im sichtbaren Spektralbereich des 3-Acetyl-guaj-azulens (IV) und des 3-Benzoyl-guaj-azulens (V). cH =Lösung in Cyclohexan, F = Lösung in Feinsprit. Die einzelnen Spektren sind entlang der Ordinate wie folgt verschoben:

IV: M = 300, V: M = 0.

е 1000-М

Fig. 3. Absorptionsspektren im sichtbaren Spektralbereich des 1,3-Diacetyl-azulens (VI) und des 2-Methyl-1,3-diacetyl-azulens (VII). $cH = L\ddot{o}sung$ in Cyclohexan, $F = L\ddot{o}sung$ in Feinsprit. Die einzelnen Spektren sind entlang der Ordinate wie

folgt verschoben: VI: M = 400, VII: M = 0.

Absorptionsspektren im ultravioletten Spektralbereich des 1-Acetyl-azulens (I), 1-Methyl-3-acetyl-azulens (II), 2-Methyl-1-acetyl-azulens (III), 3-Acetyl-guaj-azulens (IV) und des 3-Benzoylguaj-azulens (V). Sämtliche Aufnahmen wurden in Cyclohexan gemacht. Die einzelnen Spektren sind entlang der Ordinate wie folgt verschoben: I: M = 4, II: M = 3, III: M = 2, IV: M = 1, V: M = 0.

Fig. 4.

Sämtliche Absorptionsspektren wurden mittels eines selbstregistrierenden Beckman-Spektrophotometers vom Typus DK 1 aufgenommen und die am Gerät abgelesenen Wellenlängen an Hand eines gleichzeitig registrierten Hg-Linienspektrums geeicht. Die in Tab. I und II vereinigten Werte für λ_{\max} und ε_{\max} (bzw. log ε_{\max}) wurden den Originalen, die den Kurven der Fig. 1 bis 5 zu Grunde liegen, entnommen, und sie weisen die folgenden Standard-Fehler auf: Im sichtbaren Spektralbereich (Fig. 1, 2 und 3, Tab. I) $\pm 2 \text{ m}\mu$ in λ_{\max} und $\pm 10 \epsilon$ -Einheiten in ε_{\max} . Im ultravioletten Spektralbereich $\pm \frac{1}{2}$ m μ in λ_{\max} und ± 0.05 Einheiten in log ε_{\max} . Die relativ grossen Unsicherheiten in ε_{\max} und log ε_{\max} sind vor allem durch die Labilität der von uns untersuchten Verbindungen bedingt.

Die Bezeichnung der vier markantesten Banden mit A, B, C und D erhebt keinen Anspruch im Sinne einer Zuordnung der Banden, sondern dient einzig der leichteren Orientierung, ebenso wie die Bezifferung der einzelnen Maxima innerhalb einer gegebenen Bande.

In der Tab. III ist für die Verbindungen I bis VII, sowie weiter unten in der Tab. IV für Azulen (VIII), 1-Methyl-azulen (IX), 2-Methyl-azulen (X) und Guaj-azulen (XI) die Oszillator-Stärke f_A der langwelligsten Bande A angegeben worden. Diese Grösse f_A ist wie folgt definiert⁷):

$$f_{A} = \frac{mc^{2}}{\pi e^{2} N} \int_{A} \varepsilon \left(\tilde{\nu}\right) d\tilde{\nu} = 4,32 \cdot 10^{-9} \int_{A} \varepsilon \left(\nu\right) d\tilde{\nu} .$$
(1)

Es bedeuten: m,e = Masse und Ladung des Elektrons, c = Lichtgeschwindigkeit, N = Avogadro'sche Zahl, \tilde{v} = Wellenzahl in cm⁻¹.

Absorptionsspektren im ultravioletten Spektralbereich des 1,3-Diacetyl-azulens (VI) und des 2-Methyl-1,3-diacetyl-azulens (VII). Beide Aufnahmen wurden in Cyclohexan gemacht. Die Spektren sind entlang der Ordinate wie folgt verschoben: VI: M = 1, VII: M = 0.

⁷) Vgl. dazu: *R. S. Mulliken*, J. chem. Phys. **7**, 14 (1939).

Tabelle I.

Absorptionsspektren im sichtbaren Spektralbereich. Alle Wellenlängenangaben sind in m μ angegeben. ϵ = molarer Extinktionskoeffizient. Fettgedruckte Angaben beziehen sich jeweils auf das höchste Maximum, eingeklammerte Angaben auf Schulterstellen. Vbdg. = Verbindung. Lsgm. = Lösungsmittel. cH = Cyclohexan. F = Feinsprit (96-proz. Äthanol).

	1						Ban	de A					
Vbdg.	Lsgm.	1	L		2	:	3	4	1	5	<u> </u>		6
		λ_{max}	ϵ_{\max}	λ_{\max}	e _{max}	λ_{max}	ε _{max}	λ _{max}	ε _{max}	λ_{max}	€ _{max}	λ_{max}	emax
Ι	cH F	$\begin{array}{c} 652 \\ (628) \end{array}$	1 33 (105)	(625)	(152)	594 (570)	373 (410)	(568)	(381)	546 532	440 507	(526)	(365)
II	cH F	694 (663)	127 (122)	(667)	(144)	626 (596)	347 (402)	(603)	(362)	577 560	436 505	(541)	(344)
III	cH F	(690)	(59)	$\begin{array}{c} (623) \\ (618) \end{array}$	(165) (186)	(584)	(301)	565 (556)	314 (360)	548 534	322 385		
IV	cH F	(690)	(140)			(630)	(380)			584 567	481 562	(569)	(460)
V	cH F	(694)	(134)			(627)	(400)			586 567	478 552		
VI	cH F	(605)	(167)	(594)	(175)	553	496			516 501	574 637		
VII	cH F					(555)	(390)	(541)	(415)	526 512	433 505		

Tabelle II.

Absorptionsspektren im ultravioletten Spektralbereich. Angaben über Abkürzungen und Einheiten siehe Legende zur Tab. I. Alle Aufnahmen wurden in Cyclohexan gemacht.

							Band	e				
Vbdg.			в				\mathbf{C}				D	
		1	2	3	1	2	3	4	5	1	2	3
Ι	λ_{\max}	384	368	(351)	305	294	(386)	(279)	(275)	264	236	219
	$\log \epsilon_{\max}$	3,92	3,88	(3, 68)	4,64	$4,\!56$	(4, 45)	(4, 25)	(4, 13)	3,93	4,29	4,30
п	λ_{max}	400	381		309	302	297	291	(280)	268	239	
	$\log \epsilon_{max}$	3,90	3,87		4,61	4,50	4,49	4,45	(4, 19)	4,07	4,32	
III	λ _{max}	383	(367)		(307)	297				240		
	$\log \epsilon_{\max}$	3,68	(3,65)		(4, 52)	4,54				4,25		
IV	λ_{\max}	392			306					275		
	$\log \epsilon_{\max}$	3,93			4,43					4,13		
V	$\lambda_{\rm max}$	402			323	309	290	(279)		246		
	$\log \epsilon_{\max}$	3,95			4,18	4,18	4,51	(4, 37)		4,47		
VI	$\lambda_{\rm max}$	393	379		308	(302)	286	(274)		241		
	$\log \varepsilon_{\max}$	3,91	3,94		4,48	(4, 41)	4,70	(4, 32)		4,50		
VII	λ_{\max}	385			292					243		
	$\log \epsilon_{\max}$	3,72			4,57					4,32		

Ausserdem wurde in den gleichen Tab. III und IV jener Näherungswert f'_A für f_A angegeben, der sich mittels der Relation (2) errechnen lässt.

$$\mathbf{f}_{\mathbf{A}}' = 4,59 \cdot 10^{-9} \ \varepsilon_{\max} \, \varDelta \tilde{\nu}^{-8} \tag{2}$$

Es bedeuten: $\varepsilon_{max} = \text{Extinktion des höchsten Maximums der betreffenden Bande A},$ $<math>\Delta \tilde{\nu} = \text{Halbwertsbreite der Bande A}.$

Schliesslich sind in der Tab. III noch die Werte ε_{\max} des höchsten Maximums der Bande A (vgl. Kolonne 5 der Tab. I) sowie die Verhältnisse f_A/ε_{\max} und die Differenzen δf_A und $\delta \varepsilon_{\max}$ angegeben.

Tabelle III.

Charakteristische Grössen für die Intensität der Absorption der Bande A. Die in den beiden letzten Kolonnen angegebenen Differenzen sind wie folgt definiert: $\delta f_A = f_A$ (Feinsprit) – f_A (Cyclohexan), $\delta \varepsilon_{\max} = \varepsilon_{\max}$ (Feinsprit) – ε_{\max} (Cyclohexan).

Vbdg.	Lsgm.: Cyclohexan				Lsgm.: Feinsprit				80	
	f _A ∙10³	f _A ·10 ³	€.r.ax	f_A/ε_{max}	$\substack{f_{A}\\\cdot 10^{3}}$	f _A ·10 ³	ε _{max}	f_A/ε_{max}	$ \frac{\partial 1_{\mathbf{A}}}{\cdot 10^3} $	$\delta \varepsilon_{\max}$
Ι	8,5	8,2	440	19,3	10,2	10,2	507	20,1	1,3	67
п	9,0	8,7	436	20,7	10,3	11,7	505	20,4	1,3	69
III	7,6	7,5	322	23,6	9,0	9,1	385	23,3	1,4	63
IV	10,1	10,0	481	21,0	11,7	13,2	562	19,0	1,6	81
V	9,9	10,1	478	20,7	11,1	10,9	552	20,0	1,2	74
VI	10,9	10,8	574	18,9	12,6	13,5	637	19,9	1,7	63
VII	9,1	9,1	433	21,0	10,3	11,7	505	20,4	1,2	72

Tabelle 1V.

Charakteristische Grössen für die Bande A einiger Azulene. Wellenlängen in m μ . Alle Grössen beziehen sich auf Lösungen in Cyclohexan oder in Petroläther. λ_{\max} und ε_{\max} entsprechen dem höchsten Maximum der Bande A.

Nr.	Verbindung	Lit.	λ_{\max}	ε_{\max}	$f_{\rm A} \cdot 10^3$	$f'_{A} \cdot 10^3$
VIII	Azulen	$(9)^{10})$	580	329	4,5	$(5,4)^{13})$
IX	1-Methyl-azulen .	$(11)^{12})$	608	294	5,1	5,4
X	2-Methyl-azulen .	$(10)^{11})$	566 ¹⁴)	260	4,8	4,8
XI	Guaj-azulen	(4)	605	425	8,0	8,2

Die relativen Fehler in den Werten f_A betragen, entsprechend den Fehlern in ε , etwa ± 0.2 bis ± 0.3 Einheiten, doch dürfte der

⁸) Diese Formel gilt unter der Voraussetzung, dass die Bande A durch eine *Gauss*sche Normalverteilungsfunktion approximiert werden darf.

⁹) Else Kloster-Jensen, E. Kováts, A. Eschenmoser & E. Heilbronner, Helv. **39**, 1051 (1956).

¹⁰) A. Müller, Dissertation, Eidg. Technische Hochschule, Zürich 1951.

¹¹) E. Heilbronner, Dissertation, Eidg. Technische Hochschule, Zürich 1949.

¹²) F. Gerson, Diplomarbeit, Eidg. Technische Hochschule, Zürich 1955.

¹³) Die Näherungsformel (2) ist hier in Anbetracht der ausgeprägten Feinstruktur der Bande A des Azulens nur bedingt anwendbar.

¹⁴) Mittelwert aus den λ_{max} -Werten der beiden Maxima bei 569 m μ und 562 m μ .

absolute Fehler noch etwas grösser sein, da das Integral der Formel (1) in jenem Bereich, in dem sich die beiden Banden A und B überschneiden, nicht ohne zusätzliche Annahmen berechnet werden kann. Dies gilt vor allem dort, wo die Bande A hypsochrom und die Bande B bathochrom verschoben sind und ein grösserer Wellenlängenbereich der gemeinsamen Überschneidung vorliegt, d.h. vor allem für die f_A-Werte der in Feinsprit gemessenen Spektren der Verbindungen I bis VII. Der Fehler in f'_A (berechnet nach der Formel (2)) wird ganz allgemein grösser als der Fehler in f_A sein, da zur Unsicherheit in ε auch noch der Fehler der Halbwertsbreite $\Delta \tilde{\nu}$ hinzukommt.

Anmerkungen:

1) Vergleicht man die in dieser Arbeit angegebenen Werte für λ_{\max} und ε_{\max} des höchsten Maximums der Bande A mit den von Pl. A. Plattner, A. Fürst & K. Zimmermann zum Teil bereits früher bestimmten Werten4), so ergibt sich, mit Ausnahme des ε_{max} -Wertes der Bande A von III, eine befriedigende Übereinstimmung innerhalb der zitierten Fehlergrenzen.

2) Der von uns für Azulen (VIII) gefundene Wert der Oszillator-Stärke f_A der Bande A ($f_A = 4.5 \cdot 10^{-3}$) weicht von jenem Wert, der von H. B. Klevens für die Bande A von VIII angegeben wurde¹⁵) ($f_A = 9 \cdot 10^{-3}$), deutlich ab. Da aber vom genannten Autor für die intensiveren Banden A des 1,2-Benzazulens⁹)¹⁶) und des 2-Phenyl-azulens¹⁷) die, auch von uns innerhalb der Fehlergrenzen reproduzierbaren Werte von f_{\rm A}=7\cdot 10^{-3} und $f_A = 6 \cdot 10^{-3}$ gefunden wurden, dürfte es sich bei dem hohen f_A -Wert für VIII um einen Druckfehler handeln.

3) Vergleicht man einerseits f_A mit seinem Näherungswert f'_A (siehe Kolonne f_A und f'_A der Tab. III) und andererseits mit ε_{max} (Kolonne f_A/ε_{max} der Tab. III), so ergibt sich, dass f'_A nur dann eine gute Schätzung für f_A liefert, wenn die Bande A deutlich von der Nachbarbande Bgetrennt ist (Messungen in Cyclohexan: Mittel $f_A/f'_A = 1,012$, Standard-Fehler = \pm 1,8%). Überlappen sich die beiden Banden (Messungen in Feinsprit), so verschlechtert sich die durch f'_A erzielte Schätzung von f_A deutlich: Mittel $f_A/f'_A = 0.941$, Standardfehler \pm 5,5%. Verwendet man hingegen einzig ϵ_{\max} als ein Mass für f_A (was der Annahme entspricht, dass $\Delta \tilde{v}$ in (2) konstant bleibt), so findet man sowohl für die Mes. sungen in Cyclohexan als auch für jene in Feinsprit einen Standardfehler von \pm 5,7%-Innerhalb dieser Fehlergrenzen darf deshalb ε_{max} des höchsten Maximums der Bande A von Azulenketonen und damit auch von Azulenderivaten allgemein als ein signifikantes Mass von f_A betrachtet werden.

Diskussion der Resultate.

Gleich der Aldehyd-Gruppierung in dem bereits früher beschriebenen Azulenaldehyd Lactaroviolin (XII)¹⁸)¹⁹)

¹⁵) H. B. Klevens, J. Chem. Phys. 8, 1063 (1950).

16) J. R. Nunn & W. S. Rapson, J. chem. Soc. 1949, 825; Pl. A. Plattner, A. Fürst, J. Chopin & G. Winteler, Helv. 31, 501 (1948).

Pl. A. Plattner & E. Heilbronner, Helv. 31, 804 (1948).
 ¹⁸) E. Heilbronner & R. W. Schmid, Helv. 37, 2018 (1954).

19) F. Šorm, V. Benešová, J. Krupička, V. Snerberk, L. Doleiš, V. Herout & J. Sicher, Chemistry & Ind. 1954, 1511.

bewirkt in den hier untersuchten Verbindungen I bis VII die Konjugation des Azulenkerns mit einer in Stellung 1 oder 3 stehenden Carbonylgruppe eine stark hypsochrome Verschiebung um rund -25mµ (also eine Verschiebung nach kürzeren Wellenlängen) der langwelligsten Bande A in den ihnen zu Grunde liegenden Kohlenwasserstoffen VIII bis XI (vgl. Tab. IV). In Anbetracht der in den Plattnerschen Regeln²⁰) zusammengefassten Regelmässigkeiten der wechselnd bathochromen und hypsochromen Verschiebungen, die diese Bande A des Azulens VIII unter dem Einfluss (-I)-aktiver Alkylsubstituenten in den Alkyl-azulenen erleidet, konnte sie von C. A. Coulson²¹) eindeutig einem $N \rightarrow V_1$ -Übergang (¹A \rightarrow ¹L_b-Übergang in der Nomenklatur von J. R. $Platt)^{22}$ zugeordnet werden. Damit ist aber auch die Bande A des Absorptions-Spektrums der Verbindungen I bis VII, trotz ihrer durchwegs niedrigen Extinktion (ε_{max} ca. 450, f_A ca. 9 · 10⁻³) als einem $N \rightarrow V_1$ -Übergang entsprechend anzusehen²³). Als Stütze dieser Zuordnung darf unter anderem jene Erhöhung der Absorptionsintensität der Bande A (gekennzeichnet durch $\Delta \varepsilon_{max}$ bzw. Δf_{A}) betrachtet werden, die sie bei der Konjugation des Azulenkerns mit einer Carbonylgruppe in Stellung 1 oder 3 erleidet ($\Delta \varepsilon_{max}$ ca. +100, Δf_A ca. + 2·10⁻³). Ausserdem entspricht die beobachtete hypsochrome Verschiebung $\Delta \lambda_{\rm max}$ von ca. $-25~{
m m}\mu$ der theoretischen Erwartung für den $N \rightarrow V_1$ -Übergang.

Die beobachteten Werte der Verschiebungen $\Delta \lambda_{\max}$ und die Zunahmen $\Delta \varepsilon_{\max}$ und Δf_A der Bande A, den diese Bande in den entsprechenden Azulenen VIII bis XI beim Ersatz eines oder beider Wasserstoffatome in den Stellungen 1 und 3 durch Acetyl- bzw. Benzoyl-Gruppen erleidet, sind in Tab. V zusammengefasst. Die wie folgt definierten Grössen beziehen sich durchwegs auf die Messungen an Lösungen in Cyclohexan:

$$\begin{aligned} \Delta \lambda_{\max} &= \lambda_{\max} \text{ (Azulenketon)} - \lambda_{\max} \text{ (Azulen);} \\ \Delta \varepsilon_{\max} &= \varepsilon_{\max} \text{ (Azulenketon)} - \varepsilon_{\max} \text{ (Azulen);} \\ \Delta f_{A} &= f_{A} \text{ (Azulenketon)} - f_{A} \text{ (Azulen).} \end{aligned}$$
(3)

Wie der Tab. V entnommen werden kann, weisen die Grössen $\Delta \lambda_{\max}$ einerseits und $\Delta \epsilon_{\max}$ und Δf_A andererseits in quantitativer Hinsicht eine auffallende Parallelität in dem Sinne auf, dass stärkere hypsochrome Verschiebungen $\Delta \lambda_{\max}$ von einer entsprechend grösseren Intensivierung der Absorption ($\Delta \epsilon_{\max}, \Delta f_A$) begleitet werden.

²⁰) Pl. A. Plattner, Helv. 24, 283 E (1941).

²¹) C. A. Coulson, Proc. physic. Soc. London 65, 933 (1952).

²²) J. R. Platt, J. chem. Phys. 17, 484 (1949); H. B. Klevens & J. R. Platt, J. chem. Phys. 17, 470 (1949).

²³) Insbesondere sind Zuordnungen zum Typus $N \rightarrow A$ oder $N \rightarrow B$ auszuschliessen. (Betr. Definition dieser Übergänge siehe G. W. Wheland, Resonance in Organic Chemistry, New York 1955, S. 278.)

	hexan bestimmten Grössen der Tab. I, III und IV.								
Azulen	Azulen- keton	$\Delta \lambda_{\max}$ in m μ	$\varDelta \epsilon_{ m max}$	⊿f _{A²⁴)}					
VIII	I	34	+ 111	+ 4,0					
IX	п	- 31	+ 142	+ 3,9					
X	III	- 18	+ 62	+ 2,8					
XI	IV	21	+ 56	+ 2, 1					
XI	V	- 19	-+ 53	+ 1,9					
VIII	VI	$-64=2\cdot-$ 32	$+245=2\cdot+$ 123	$+6,4=2\cdot+3,2$					
× X	VII	$-40 = 2 \cdot -20$	$+173 = 2 \cdot + 87$	$+4,3 = 2 \cdot +2,2$					

Differenzen $\Delta \lambda_{\max}$, $\Delta \varepsilon_{\max}$ und Δf_A . Alle Werte gelten für die an Lösungen in Cyclohexan bestimmten Grössen der Tab. I, III und IV.

Versucht man nun, sich mittels der von *E. A. Braude & E. S. Waight* angegebenen²⁵) van der Waals-Radien für den Carbonylsauerstoff ($r_{v. d. W.} = 0,90$ Å), das Wasserstoffatom ($r_{v. d. W.} = 0,65$ Å)

²⁴) Die entsprechenden Differenzen Δf_A zeigen den gleichen Gang, wenn auch in etwas weniger ausgeprägter Weise. Dies ist auf die relativ grössere Unsicherheit bei der Anwendung der Formel (2) auf stark strukturierte Banden (wie z. B. bei VIII) zurückzuführen.

²⁵) E. A. Braude & E. S. Waight²), S. 145,

und die Methylgruppe $(r_{v. d. W.} = 1,60 \text{ Å})^{26})$ und unter plausiblen Annahmen über die Geometrie des Azulenkerns²⁷) Einblick in die sterischen Verhältnisse in den Verbindungen I bis VII zu verschaffen, so ergibt sich, wie aus den Diagrammen (a), (b), (c) und (d) herausgelesen werden kann, das vorstehende Bild.

In den Verbindungen I und II kann die Acetylgruppe zwei mit dem Azulenkern koplanare Konstellationen einnehmen, von denen die eine, in (a) dargestellte sterisch gehindert ist, so dass in den genannten Verbindungen wohl diejenige koplanare Konstellation vorliegt, in der die sperrige Methylgruppe derart vom Siebenring wegweist, dass der Carbonyl-Sauerstoff "s-cis" zum Siebenring steht. Diese, in der Folge als "s-cis" bezeichnete Konstellation dürfte auch deshalb energetisch günstiger sein, weil in ihr diejenige Ladungstrennung, die dem Anteil der Sammelstruktur Ic bei der Beschreibung des Grundzustandes N dieser Verbindungen entspricht, bei gleichem Gewicht g_{Ic} dieser Grenzstruktur kleiner ist, als in der unter (a) dargestellten "s-trans"-Konstellation.

Das Gleiche gilt entsprechend für die Verbindung VI, in der beide Acetylgruppen relativ zum Azulenkern die "s-cis"-Konstellation einnehmen werden.

In der Verbindung III tritt nun, wie das Diagramm (b) zeigt, die in Stellung 2 stehende Methylgruppe derart mit der Acetylgruppierung in Wechselwirkung, dass nun auch die in den Verbindungen I, II und VI ungehinderte, koplanare "s-cis"-Konstellation sterisch verunmöglicht und somit die Acetylgruppe aus der Ebene des Azulenkerns herausgedreht wird. Analoge Verhältnisse herrschen für die beiden Acetylgruppen in den Stellungen 1 und 3 der Verbindung VII. Ob sich in III und VII die Acetylgruppen mehr in der Nähe der "s-cis"- oder der "s-trans"-Konstellation aufhalten, d.h. ob die im Diagramm (a) eingezeichnete Überschneidung der *van der Waals*-Radien oder die des Diagramms (b) der stärkeren sterischen Hinderung entspricht, lässt sich in Anbetracht der willkürlichen Festlegung dieser Radien nicht an Hand solcher Diagramme entscheiden.

²⁶) Die hier zur Anwendung gelangenden Werte der *van der Waals*-Radien $r_{v.d.W.}$ weichen von den kovalenten Radien, wie sie von *E. A. Braude & E. S. Waight*²⁵) für spektroskopische Zwecke vorgeschlagen wurden, im gleichen Sinne ab, wie die von den genannten Autoren in den Diagrammen der zitierten Arbeit tatsächlich verwendeten Radien.

²⁷) Bindungslängen aller peripheren C—C-Abstände = 1,40 Å, Bindungslänge der Bindung zwischen C_3 und $C_{10} = 1.45$ Å.

In der Verbindung IV ist, wie aus dem Diagramm (c) ersichtlich, die "s-cis"-Konstellation durch die in Stellung 8 stehende Methylgruppe deutlich gehindert, die nicht diagrammatisch dargestellte "s-trans"-Konstellation, dem grösseren van der Waals-Radius der Methylgruppe des Acetylrestes entsprechend, natürlich noch mehr. Auch in dieser Verbindung wird demnach die Acetylgruppe aus der Molekelebene hinausgedreht und zwar, den Erfahrungen an anderen, vergleichbaren Molekeln entsprechend, um einen grösseren Betrag als in den Verbindungen III oder VII²⁸).

Das Diagramm (d) zeigt schliesslich, dass die sterische Beeinträchtigung der Koplanarität von Azulenkern und Carbonylgruppe in der Verbindung V infolge der stark raumbeanspruchenden Phenylgruppe des Benzoyl-Restes noch deutlicher wird. In dieser Verbindung V ist nicht nur die Benzoylgruppe als Ganzes gegenüber dem Azulenkern aus dessen Ebene hinausgedreht, sondern auch die Koplanarität der Phenyl-Gruppe und der Carbonyl-Doppelbindung ist sterisch gehindert.

Zusammenfassend ergibt sich somit die folgende Reihe von Verbindungen, in denen die Resonanz zwischen Carbonylgruppe und Azulenkern zunehmend sterisch gehindert ist:

I, II, VI	< III, VII $<$ IV $<$ V
ungehindert	zunehmende Hinderung

Diese Reihenfolge entspricht nun genau der Sequenz der in Tab. V für die Verbindungen I bis VII angegebenen Werte für $\Delta \lambda_{\max}$, $\Delta \varepsilon_{\max}$ und Δf_A , wobei entsprechend dem Vorliegen von je zwei Acetylgruppen die Δ -Werte, die für die Verbindungen VI und VII gefunden wurden, jeweils zu halbieren sind²⁹).

Der Effekt der sterischen Hinderung der Resonanz wirkt nun dahingehend, dass die beobachteten $\Delta \lambda_{\max}$ -Werte in den betreffenden Verbindungen III, IV, V und VII um rund $\frac{1}{3}$ kleiner sind als in den sterisch ungehinderten Verbindungen I, II und VI, d.h. dass die durch λ_{\max} des höchsten Maximums charakterisierte Bande A langwelliger liegt als man es für ein entsprechendes koplanares System erwarten sollte. Desgleichen sind die beobachteten Werte ϵ_{\max} und f_A der Bande A in den sterisch gehinderten Verbindungen kleiner (um rund 60 ε -Einheiten, resp. 1 $\frac{1}{2}$ Einheiten in f_A) als die Erwartungswerte, die für diese Verbindungen unter der Annahme sterisch ungehinderter Koplanarität des π -Elektronensystems errechnet werden können.

²⁸) Vgl. z. B.: R. A. Friedel & M. Orchin, Ultraviolet Spectra of Aromatic Compounds, New York 1951.

²⁹) Die in diesem Vorgehen *implicite* enthaltene Annahme von der Additivität der Effekte bei mehrfacher Substitution am Azulenkern entspricht der Erfahrung (vgl. Pl. A. Plattner²⁰), L. H. Chopard-dit-Jean & E. Heilbronner, Helv. **35**, 2170 (1952), **36**, 144 (1953)) und der, für nicht alternierende π -Elektronensysteme gültigen, theoretischen Erwartung (C. A. Coulson²¹), H. C. Longuet-Higgins & R. G. Sowden, J. chem. Soc. **1952**, 1404).

Man gelangt somit zu dem Resultat, dass in den 1-Azulylketonen die zunehmende sterische Behinderung der Konjugation zwischen Azulenkern und Carbonylgruppe von einer Abnahme der Intensität und – im Gegensatz zu dem, was man üblicherweise beobachtet – von einer bathochromen Verschiebung der langwelligsten, dem $N \rightarrow V_1$ -Übergang zugeordneten Bande A begleitet ist.

Anmerkungen:

1. Der hier eingeschlagene Weg zur Bestimmung der Differenzen $\Delta \lambda_{\max}$, $\Delta \varepsilon_{\max}$ und Δf_A weicht von jenem, der üblicherweise für die Schätzung dieser Grössen in sterisch gehinderten, mesomeren Systemen eingeschlagen wird, etwas ab^2)³). Die zusätzlichen Verschiebungen und Intensitätserhöhungen, welche die Bande A in dem, dem jeweiligen Keton zu Grunde liegenden Kohlenwasserstoff durch die bereits vorhandenen Alkylgruppen erleidet, wird für jede Verbindung gesondert berücksichtigt³⁰). Dies ist in unserem Falle deshalb notwendig, da in den nicht alternierenden Kohlenwasserstoffen die durch Alkylgruppen hervorgerufenen Verschiebungen $\Delta \lambda_{\max}$ und $\Delta \varepsilon_{\max}$ nicht nur je nach Position am Kern bathochrom oder hypsochrom bzw. mehr oder weniger Absorptions-intensivierend wirken können, sondern vor allem auch deshalb, weil diese Verschiebungen in absoluter Grösse um fast eine Zehnerpotenz grösser sind als in den Derivaten alternierender Kohlenwasserstoffe. (So beträgt z. B. $\Delta \lambda_{\max}$, hervorgerufen durch eine Alkylgruppe in den verschiedenen Stellungen eines alternierenden Kohlenwasserstoffes, im Mittel ca. + 3 m μ mit geringfügigen Streuungen, während die gleiche Gruppe in VIII Verschiebungen zwischen $-15 \text{ m}\mu$ und $+30 \text{ m}\mu$ je nach ihrer Stellung am Kern, hervorrufen kann.)

In diesem Zusammenhang sei erwähnt, dass die, dem Korrekturverfahren zu Grunde liegende Annahme der Additivität der Effekte innerhalb der hier untersuchten Reihe von Derivaten nicht alternierender Kohlenwasserstoffe besser erfüllt ist als im Falle von Derivaten alternierender Kohlenwasserstoffe. (Vgl. dazu Fussnoten²¹)²⁹.)

2. Dass die bathochrome Verschiebung von $+13 \text{ m}\mu$, welche die Verbindung IV relativ zu I in ihrem $\Delta\lambda_{\max}$ -Wert erleidet (vgl. Tab. V: $\Delta\lambda_{\max}$ (I) = $-34 \text{ m}\mu$, $\Delta\lambda_{\max}$ (IV) = $-21 \text{ m}\mu$), in der Tat sterisch bedingt ist, lässt sich durch die Tatsache erhärten, dass für Guaj-azulen-1-aldehyd³¹) (Formelschema für IV mit HCO statt CH₃CO), in dem die Aldehydgruppe die mit dem Azulenkern koplanare, sterisch ungehinderte "s-trans"-Konstellation einnehmen kann, die Bande A den Wert $\lambda_{\max} = 572 \text{ m}\mu^{18}$) entsprechend $\Delta\lambda_{\max} = -33 \text{ m}\mu$ annimmt. Dieser $\Delta\lambda_{\max}$ entspricht sowohl demjenigen der Verbindung I als auch dem für das sterisch ungehinderte Lactarviolin (XII) berechneten Wert von $\Delta\lambda_{\max} = -39 \text{ m}\mu$, bezogen auf ein 4,7-Dialkyl-azulen³²).

3. Der Einfluss, den das Lösungsnittel auf Lage und Intensität der Bande A hat, kommt in den Werten der Tab. I (λ_{max}) und IV ($\delta \varepsilon_{max}$, δf_A) zum Ausdruck. Die mittlere hypsochrome Verschiebung, welche die Bande A beim Wechsel des Lösungsmittels von Cyclohexan zu Feinsprit erleidet, beträgt mit geringen Abweichungen im Mittel – 17 m μ (Extremwerte: -14 m μ für I, -19 m μ für V), die mittleren Extinktionserhöhungen + 70 Einheiten in ε_{max} (Extremwerte: + 63 für III, VI, + 81 für IV) und die mittlere

³¹) W. H. Stafford & D. H. Reid, Chemistry & Ind. 1954, 277; R. W. Schmid, Dissertation, Eidg. Technische Hochschule, Zürich 1955.

³²) Berechnet nach den *Plattner*'schen Verschiebungsregeln²⁰), wie sie in ¹¹) angegeben sind. Der so berechnete Wert von $\Delta \lambda_{max} = -39 \text{ m}\mu$ dürfte in Anbetracht der Tatsache, dass XII in Stellung 7 eine Isopropenylgruppe trägt, etwas zu hoch sein.

³⁰) Von *E. A. Braude*²)³) wird jeweils nur derjenige Erwartungswert für ε_{max} berechnet, der dem $N \rightarrow V_1$ -Übergang des Systems in der koplanaren Konstellation entsprechen würde, wobei angenommen wird, dass der, für alternierende, aromatische Kohlenwasserstoffe kleine Einfluss der Substituenten unabhängig von der Stellung am Kern und additiv ist.

Zunahme in $f_A + 1,4$ Einheiten (Extremwerte + 1,2 für V, VII, + 1,7 für VI). Dicser systematische Gang der Grössen $\delta \lambda_{\max}$, $\delta \varepsilon_{\max}$ und δf_A beim Lösungsmittelwechsel für alle Verbindungen I bis VII darf als ein Hinweis dafür gelten, dass in ihnen die Carbonylgruppen stets die gleichen Stellungen, nämlich 1 oder 3, besetzen. Dies spricht insbesondere gegen die früher, bezüglich der Konstitution von IV, V und VI gehegte Vermutung, die Carbonylgruppe könnte mit dem Azulenkern in Stellung 5 verknüpft sein⁴).

Bemerkungen über den Einfluss der Stereochemie auf die spektroskopischen Eigenschaften organischer Verbindungen.

In Anbetracht der umfassenden Darstellungen, die der Einfluss der Stereochemie auf die spektroskopischen Eigenschaften organischer Verbindungen in letzter Zeit erfahren $hat^2)^{3}$, ist es von Interesse, die Ergebnisse der vorliegenden Arbeit und gewisse sich daraus ergebende Folgerungen innerhalb dieses weiteren Rahmens zu besprechen. Zu diesem Zwecke seien, der Vollständigkeit halber, die vor allem von *E. A. Braude* und seiner Schule vertretenen Ansichten²)³³³) an dieser Stelle kurz zusammengefasst.

Werden zwei π -Elektronen-Teilsysteme X und Y (z.B. zwei Phenylgruppen) derart über eine Bindung miteinander verknüpft, dass ein erweitertes π -Elektronensystem X—Y entsteht (z.B. Diphenyl), so tritt im Absorptionsspektrum dieses Systems X—Y eine Absorptionsbande auf, die dem Übergang des Systems vom Grundzustand N zum angeregten Zustand V₁ zugeordnet wird³⁴) (sog. K-Bande)³⁵). Die beiden Zustände N und V₁ lassen sich in der Sprache der Resonanz-Theorie formell durch folgendes Schema charakterisieren:

	XY	$\leftrightarrow \rightarrow$	X = Y	\longleftrightarrow	X = Y	36)
			Θ \oplus		$\oplus \Theta$	
Zustand N:	$g_{N, k}$		$g_{N,i}$		g _{N, j}	
Zustand V ₁ :	gvk		$g_{V,i}$		$g_{V,i}$	

(X - Y - kovalente Grenzstruktur, X = Y, X = Y = ionische Grenzstrukturen. $<math>\bigcirc \oplus \oplus \odot \bigcirc$

des Grundzustandes N beitragen. Im angeregten Zustand V₁ hingegen sollen die ionischen Strukturen X=-Y und X=-Y, entsprechend den ihnen zukommenden höheren Energie- \odot \oplus \oplus \ominus

³³) E. A. Braude, Ultraviolet and Visible Light Absorption, in: E. A. Braude & F. C. Nachod, Determination of Organic Structures by Physical Methods, New York 1955, S. 131.

³⁴) Im allgemeinen handelt es sich dabei um den energetisch günstigsten, erlaubten Übergang. Der betreffenden Bande können aber unter Umständen langwelligere, intensitätsarme Banden vorgelagert sein, die Übergängen zugeordnet werden, die im Prinzip verboten wären. So ist z.B. im Styrol der dem $N \rightarrow V_1$ -Übergang entsprechenden Bande bei 244 m μ , $\varepsilon \approx 12000$, eine Bande bei 282 m μ , $\varepsilon \approx 450$ (sog. B-Bande)³³) vorgelagert.

³⁵) A. Burawoy, J. chem. Soc. 1939, 1177.

³⁶) Jede der drei hier angegebenen Grenzstrukturen symbolisiert jeweils einen ganzen Satz von Grenzstrukturen. Vgl. dazu: G. W. Wheland²³).

werten H_{ii} und H_{jj}^{37} , einen relativ grösseren Beitrag liefern als zum Grundzustand N, so dass die Gewichte g_v den folgenden Relationen (4) genügen:

$$g_{V,i} > g_{N,i}, \ g_{V,j} > g_{N,j} \cdot \cdot g_{V,k} < g_{N,k}.$$
 (4)

Aus (4) ergibt sich für den Doppelbindungs-Charakter \varkappa_{XY} der die beiden Teilsysteme vereinigenden Bindung, dass er im angeregten Zustand V_1 (\varkappa_{XY}^V) grösser sein muss als im Grundzustand N (\varkappa_{XY}^N) , da er ja als die Summe der Gewichte derjenigen Grenzstrukturen definiert ist, die zwischen den betreffenden Atomen eine formelle Doppelbindung aufweisen.

$$\varkappa_{XY}^{V} > \varkappa_{XY}^{X}$$
(5)

Die Schlussfolgerung (5) soll ohne Rücksicht auf den Typus der Teilsysteme X und Y allgemein gelten.

Treten die beiden, zu X—Y vereinigten Teilsysteme X und Y sterisch derart in Wechselwirkung, dass die beiden für sich koplanaren Teilsysteme nicht mehr in einer gemeinsamen Ebene liegen können, sondern entlang der Bindung zwischen X und Y um den Winkel φ gegeneinander verdreht sind, so wird dadurch die Konjugation der beiden Systeme X und Y über die nun um den Winkel φ verdrillte π -Bindung erschwert. Das Overlap zwischen den beiden an dieser Bindung beteiligten $2p_z$ -AO's sinkt mit wachsendem Winkel φ , um bei $\varphi = 90^{\circ}$, d.h. bei orthogonal stehenden π -Elektronensystemen der Teile X und Y, den Wert Null anzunehmen. Daraus ergibt sich unter Einbeziehung der oben angegebenen Ableitung des Doppelbindungs-Charakters, dass offensichtlich jener Zustand empfindlicher auf eine Verdrehung der Teilsysteme X und Y gegeneinander reagieren muss, dessen \varkappa_{XY} -Wert der grössere ist, d.h. dessen Stabilität stärker vom Beitrag der ionischen Strukturen X=Y und X=Y abhängt.

Damit reagiert innerhalb dieser Formulierung der angeregte Zustand V_1 in dem Sinne empfindlicher auf eine Verdrillung der π -Bindung zwischen X und Y, dass der ihm zugeordnete Energiewert E_{V_1} für einen gleichen Verdrillungswinkel φ um einen grösseren Betrag δE_{V_1} nach positiveren Energiewerten abwandert als der Energiewert E_N des Grundzustandes N, dessen Störung δE_N betrage. Die daraus resultierende Änderung $\delta E = \delta E_{V_1} - \delta E_N$ der Energiedifferenz $\Delta E = E_{V_1} - E_N$ ist demnach stets eine positive Grösse, so dass für die Energie $\Delta E'$ des $N \rightarrow V_1$ -Überganges im sterisch gehinderten System X-Y stets die Relation (6) gilt:

$$\mathbf{1}\mathbf{E}' = \mathbf{\Delta}\mathbf{E} + \delta\mathbf{E}.\tag{6}$$

Somit ist die sterische Hinderung der Koplanarität eines Systems X—Y immer von einer Vergrösserung der dem $N \rightarrow V_1$. Übergang entsprechenden Energiedifferenz ΔE des koplanaren Systems begleitet, die sich dann in einer hypsochromen Verschiebung der K-Bande auswirkt.

³⁷) Die den Grenzstrukturen X-Y, X=Y und X=Y zukommenden Energiewerte $\bigcirc \oplus \oplus \oplus \odot \oplus \oplus \oplus \oplus \odot$

H_{kk}, H_{ii} und H_{jj} sind innerhalb der VB-Theorie als

$$\mathbf{H}_{11} = \int \psi_1 \, \mathbf{H}_{\mathrm{op}} \, \psi_1 \, \mathrm{d} \tau$$

definiert, worin ψ_1 die normierten, der Grenzstruktur l entsprechenden Linearkombinationen von *Slater*'schen Produktfunktionen bedeuten.

³⁸) Das Übergangsmoment $M_{N \rightarrow V_1}$ ist definiert als

$$\mathbf{M}_{\mathbf{N} \to \mathbf{V}_{\mathbf{1}}} = \mathbf{e} \int \boldsymbol{\Gamma}_{\mathbf{N}} \, \mathbf{\vec{x}} \, \boldsymbol{\Gamma}_{\mathbf{V}_{\mathbf{1}}} \, \mathrm{d}\boldsymbol{\tau} \, .$$

 $\Gamma_{\rm N}$ und $\Gamma_{\rm V_1}$ sind die den Zuständen N und V₁ entsprechenden Linearkombinationen der Funktionen ψ_1^{37}).

geworden ist. Dies wirkt sich in einem Abfall der integrierten Extinktion der K-Bande, d.h. einer Abnahme der Oszillator-Stärke f (vgl. Relation (1)) bzw. in einem Abfall der Grösse ε_{\max} (vgl. Relation (2)) aus.

Der hier skizzierte Gedankengang³⁹) gilt scheinbar ganz allgemein, da er keinerlei Voraussetzungen über die Natur der beiden zu koppelnden Teilsysteme zu machen vorgibt. Man ist deshalb geneigt, als Arbeitshypothese die Regel aufzustellen, dass der Übergang von einem sterisch bedingt nicht koplanaren Grundzustand zweier gekoppelter Teilsysteme X und Y zu einem gleicherweise nicht koplanaren, angeregten Zustand⁴⁰) stets von einer hypsochromen Verschiebung der K-Bande ($\Delta \lambda_{\max} < 0$) und von einem Abfall der Intensität dieser Bande (gekennzeichnet durch f oder ε_{\max}) relativ zu denWerten der K-Bande in einem sterisch nicht gestörten System begleitet sein muss.

Diese Regel hat sich, wie ein ausgedehntes experimentelles Material zeigt, für die gut untersuchten Verbindungsklassen der substituierten Diphenyle⁴¹), Styrole⁴²), Stilbene⁴³) und Polyene⁴⁴) bestätigt. Diese Verbindungen wurden von *E. A. Braude*, *F. Sondheimer & W. F. Forbes*⁴⁵) als zu einem ersten Typ (Typ I) spektralen Verhaltens gehörig bezeichnet.

Daneben wurden nun in neuerer Zeit eine Reihe von Verbindungen beschrieben (Benzaldehyde und Acetophenone⁴⁶), α,β -ungesättigte Aldehyde und Ketone)⁴⁷), in denen die sterische Hinderung der Koplanarität der beiden gekoppelten Teilsysteme X und Y (X = Carbonylgruppe, Y = Phenylgruppe, Vinylgruppe) zwar immer noch von einer Intensitätsabnahme der K-Bande relativ zur Intensität dieser Bande in sterisch ungehinderten Systemen begleitet ist, die aber, innerhalb der Fehlergrenzen, nur noch eine geringe oder gar keine entsprechende hypsochrome Verschiebung mehr aufweisen. (Typ II nach E. A. Braude, F. Sondheimer & W. F. Forbes.)

Zur Erklärung dieser experimentell gefundenen Tatsache wurde unter impliziter Zugrundelegung der oben zitierten Regel von *E. A. Braude*, *F. Sondheimer & W. F. Forbes*⁴⁵) die bereits früher von *R. B. Turner & Dorothy M. Voitle*⁴⁷) sowie von *R. N. Beale & E. M. F. Roe*⁴³) in Betracht gezogene Annahme postuliert, dass es sich bei dem, dem Typ II entsprechenden Verhalten um einen $N \rightarrow V_1$ -Übergang zwischen den quasikoplanaren Konstellationen des Grundzustandes N und des angeregten Zustandes V₁ handelt (entsprechend $\delta E \approx 0$, $\Delta \lambda_{max} \approx 0$), dessen Übergangsmoment ebenfalls als im wesentlichen ungestört zu betrachten ist. Der beobachtete Intensitätsrückgang der K-Bande wird dann auf die Abnahme der, durch die *Boltzmann*-Verteilung beschriebenen Populationsdichte der energetisch ungünstigeren, quasi-koplanaren Konstellation des Grundzustandes zurückgeführt. (Siehe Fussnote ⁴⁸) auf Seite 2013.)

³⁹) Eine detaillierte Diskussion der Anwendung des Resonanz-Formalismus auf spektroskopische Probleme wurde von G. W. Wheland gegeben²³).

 40 In Anbetracht der extrem kurzen Zeit, die für den Elektronenübergang von N nach V₁ benötigt wird, bleibt die Ausgangskonstellation während des Anregungsaktes erhalten (*Frank-Condon*-Prinzip).

⁴¹) Vgl. Fussnoten ²)³)²⁸) sowie: G. H. Beaven, D. Muriel Hall, Mary S. Lesslie, E. E. Turner & (in part) Gwendoline R. Bird, J. chem. Soc. **1954**, 131; D. Muriel Hall, S. Ridgwell & E. E. Turner, J. chem. Soc. **1954**, 2498; W. H. Rodebush & I. Feldman, J. Amer. chem. Soc. **68**, 896 (1946).

⁴²) Mme Ramart-Lucas & M. J. Hoch, Bull. Soc. chim. France [5] 2, 327 (1935);
 M. J. Murray & W. S. Gallaway, J. Amer. chem. Soc. 70, 3867 (1948); K. C. Bryant,
 G. T. Kennedy & Miss E. M. Tanner, J. chem. Soc. 1949, 2389.

43) R. N. Beale & E. M. F. Roe, J. Amer. chem. Soc. 74, 2302 (1952).

⁴⁴) Vgl. Fussnote ³) und: A. E. Gillam, E. S. Stern & E. R. H. Jones, An Introduc-

tion to Electronic Absorption Spectroscopy in Organic Chemistry, London 1954, S. 220.
 ⁴⁵) E. A. Braude, F. Sondheimer & W. F. Forbes, Nature 173, 117 (1954).

⁴⁶) Vgl. Fussnoten ²)³)⁴⁵) sowie ³³), S. 173.

⁴⁷) Vgl. Fussnoten²)³) und: *R. B. Turner & Dorothy M. Voitle*, J. Amer. chem. Soc. **73**, 1403 (1951).

Die Azulenketone I bis VII würden dann, nach den vorliegenden Untersuchungen, einem dritten Typ (Typ III) entsprechen, bei dem die sterisch bedingte Abnahme der Intensität der K-Bande von einer bathochromen Verschiebung ($\Delta \lambda_{\max} > 0$) dieser Bande, begleitet ist. Zusammenfassend ergäbe sich somit die folgende Klassifikation:

Tabelle	V	Τ
---------	---	---

Erweiterte Klassifikation nach E. A. Braude, F. Sondheimer & W. F. Forbes⁴⁵).

	Bei sterischer Hinderung der Koplanarität von X und Y	Beispiele
Typ I	$arDelta\lambda_{\max} < 0$; $arDeltaarepsilon_{\max} < 0$	Diphenyle, Styrole, Stilbene
Typ II	$\Delta \lambda_{\max} pprox 0; \Delta \varepsilon_{\max} < 0$	α, β -ungesättigte Ketone und Aldehyde, Acetophenone
Typ III	$\Delta \lambda_{\max} > 0$; $\Delta \epsilon_{\max} < 0$	1-Azulyl-ketone

Das Verhalten der Verbindungen vom Typ III widerlegt eindeutig die Allgemeingültigkeit der oben abgeleiteten Regel, dass sterische Hinderung der Koplanarität unbedingt von einer hypsochromen Verschiebung der K-Bande begleitet sein muss. Offensichtlich reagiert in den 1-Azulyl-ketonen der Grundzustand N empfindlicher auf eine Störung der Koplanarität zwischen Carbonylgruppe und Azulenkern als der angeregte Zustand V₁ ($\delta E_N > \delta E_{V1}$), so dass $\Delta E' < \Delta E$ wird (vgl. (6)) und der $N \rightarrow V_1$ -Übergang somit im gestörten System bei relativ längeren Wellenlängen erfolgt. Mit dem Nachweis, dass die der Klassifikation der Tab. VI zu Grunde liegende Regel nicht allgemein gültig sein kann, fällt aber auch die Notwendigkeit hinweg, das Fehlen der hypsochromen Verschiebungen in den sterisch gehinderten Verbindungen vom Typ II auf eine koplanare Konstellation beim Anregungsakt zurückzuführen. Die Zusammenstellung der Tab. VI legt vielmehr die Vermutung nahe, dass es sich bei den drei zur Diskussion stehenden Typen nicht, wie für die Typen I und II postuliert, um qualitativ verschiedene Mechanismen handelt, sondern um einen, die kontinuierliche Reihe der beobachteten $\Delta \lambda_{max}$ -Werte bedingenden, quantitativen Parameter innerhalb des immer gleichen Mechanismus (vgl. Kolonne 2 der Tab. VI).

Eine eingehende Analyse der, im weiter oben verwendeten Resonanz-Formalismus *implicite* enthaltenen Annahmen und Vereinfachungen sowie deren Auswirkung auf die Schlussfolgerungen, die aus diesem Formalismus gezogen werden können, geht über den Rahmen der vorliegenden Arbeit hinaus, doch sollen die folgenden Punkte, die zum Versagen dieses Formalismus bei der Ableitung obiger Regel mit beigetragen haben, kurz Erwähnung finden.

1. Es wurde angenommen, dass durch die Verdrillung einer Bindung, die zwei Toilsysteme X und Y zum Gesamtsystem X—Y verbindet, nur die Energie derjenigen Grenzstrukturen beeinflusst wird, in denen die betreffende Bindung als formelle Doppelbindung vorliegt (z. B. die ionischen Grenzstrukturen X=Y und X=Y im Schema der Seite 2009).

Diese Beeinflussung soll sich in einer Destabilisierung der entsprechenden Grenzstrukturen auswirken. Dazu ist zu bemerken, dass innerhalb der VB-Theorie, die der ResonanzTheorie zu Grunde liegt, auch die Energieparameter derjenigen Grenzstrukturen, die zwischen den in Frage stehenden Atomen eine formelle Einfachbindung aufweisen, auf eine Verdrillung dieser Bindung reagieren, und zwar durch eine Verschiebung nach negativeren Werten (Stabilisierung) um etwa die Hälfte jenes Betrages, um den die Energiewerte der Grenzstrukturen mit formeller Doppelbindung nach positiveren Werten verschoben werden. Abgesehen von diesem Effekt, der die oben angegebenen Folgerungen der unbedingt hypsochromen Verschiebung zusätzlich stützen würde, ist zu bemerken, dass auch die Kreuzterme, die für Resonanz zwischen den postulierten Grenzstrukturen sorgen, ebenfalls stark vom Verdrillungswinkel φ der betreffenden Bindung abhängig sind. So können sich leicht Fälle ergeben, für welche der Übergang $N \rightarrow V_1$, auch innerhalb des oben verwendeten Schemas, nicht von einer Zunahme des Doppelbindungs-Charakters \varkappa_{XY} begleitet ist.

2. Es ist bekannt, dass der Doppelbindungs-Charakter innerhalb der VB-Theorie gegen sog. Basistransformationen nicht invariant ist. Es ist deshalb stets möglich, aus der grossen Zahl von Grenzstrukturen, die sich für eine Verbindung schreiben lassen, willkürlich einen vollständigen kanonischen Satz von Grenzstrukturen derart auszuwählen, dass in ihm ohne Verlust an Allgemeinheit der theoretischen Behandlung eine vorgegebene Bindung in keiner einzigen Grenzstruktur als formelle Doppelbindung auftritt. Dadurch weist diese Bindung für alle berechenbaren Zustände der Molekel den Doppelbindungscharakter Null auf. Aus diesem Grunde wird, was die theoretische Seite des Problems betrifft, die oben abgeleitete Regel offensichtlich von der physikalisch willkürlichen Wahl eines "chemisch vernünftigen" kanonischen Satzes abhängig⁴⁹).

3. Die Selektion einer kleinen Zahl von Grenzstrukturen aus dem vollen kanonischen Satz bedingt eine grosse Unsicherheit auch bei der nur qualitativen Abschätzung von Erwartungswerten. Dies wird deutlich ersichtlich, wenn man einen solchen Satz durch zusätzliche Grenzstrukturen von ungefähr gleicher Energie erweitert. Fügt man beispielsweise der üblichen Darstellung für α,β -ungesättigte Ketone C=C-C=O \iff C-C=C-O \oplus

die Grenzformel C=C--C--O (die energetisch günstiger als die Grenzformel C--C=C--O $\oplus \oplus \oplus \oplus$

ist) hinzu, so lässt sich die beim $N \rightarrow V_1$ -Übergang auftretende Änderung des Doppelbindungs-Charakters der zentralen Doppelbindung insbesondere wegen der Unkenntnis der Grösse der Kupplungsterme (Kreuzterme) nur sehr bedingt innerhalb der vereinfachenden Annahmen der Resonanztheorie ableiten.

Zusätzlich zu diesen Gründen, die dafür verantwortlich gemacht werden können, dass die oben angegebene Regel nicht schlüssig aus dem verwendeten Resonanzschema gefolgert werden kann, ist noch Folgendes zu bemerken. Die Zusatzannahme für die Verbindungen vom Typ II, nämlich dass in ihnen nur die Übergänge zwischen den quasi-koplanaren Konstellationen der Zustände N und V₁ erlaubt sind, oder anders ausgedrückt, dass ihre Übergangsmomente $M_{N\to V_1}$ für die nicht koplanaren Konstellationen mit wachsendem Verdrillungswinkel φ erheblich schneller klein werden als in den Verbindungen, die zum Typus I gehören, ist als *ad hoc*-Hypothese zu bewerten. Auf ihr beruht letzten Endes die Einteilung in die zwei Typen I und II, wobei aber für dieses unterschiedliche Verhalten keine theoretische

⁴⁸) Diese Anschauung enthält *implicite* die Annahme, dass Übergänge, ausgehend von nicht koplanaren Konstellationen *quasi* verboten sind (vgl. weiter unten).

⁴⁹) Diese Tatsache hat u.a. dazu geführt, dass man den Doppelbindungscharakter für die theoretischen Belange durch den Bindungsindex ersetzt hat, der die oben zitierten Mängel der Mehrdeutigkeit nicht aufweist: *W.G. Penney*, Proc. Roy. Soc. London, A **158**, 306 (1937).

Begründung gegeben werden kann. Damit wird auch eine Voraussage bezüglich der Zuteilung anderer noch nicht untersuchter Systeme zum einen oder anderen Typus verunmöglicht.

Zum Abschluss soll nun gezeigt werden, dass ein anderes, zum Teil der MO-Theorie entlehntes Modell zu einer Rationalisierung der beobachteten Effekte innerhalb eines einzigen Mechanismus führt. Dieser bezieht auch das an den 1-Azulyl-ketonen beobachtete, innerhalb der oben zitierten Anschauungen nur schwer deutbare Verhalten mit in sich ein. Es sei betont, dass auch dieses Modell als sehr stark vereinfacht zu betrachten ist, so dass die hier angegebene Formulierung wohl einzig als Arbeitshypothese gelten darf, obschon sie das bekannte experimentelle Material befriedigend zu deuten vermag.

Verwendet man für die in der Tab. VI angegebenen Beispiele der den drei Typen zugeordneten Verbindungen einen vorgegebenen Satz von van der Waals-Radien²⁵)²⁶) und für die Geometrie der betreffenden Verbindungen X—Y plausible Parameter, so lassen sich leicht jene Verdrillungswinkel $\varphi_{\rm K}$ der Bindung zwischen X und Y berechnen, bei denen die sich sterisch behindernden Gruppen der Teilsysteme X und Y gerade in van der Waals-Kontakt treten (Kontaktwinkel $\varphi_{\rm K}$). Diese Kontaktwinkel $\varphi_{\rm K}$ sind in der Tab. VII angegeben⁵⁰). Der wahre, mittlere Verdrillungswinkel $\varphi_{\rm m}$ (siehe weiter unten) ist kleiner als der Kontaktwinkel $\varphi_{\rm K}$, da ja letzterer im gewählten Modell dem Einsatz der Potentialfunktion entspricht. Dabei wird $\varphi_{\rm m}$ um so stärker gegen kleinere Werte verlagert sein, je leichter die sich hindernden Gruppen einander ausweichen können (entsprechend einem flacheren Anstieg der Potentialfunktion für $\varphi < \varphi_{\rm K}$) und je empfindlicher $\varphi_{\rm K}$ auf kleine Deformationen des Molekelskeletts reagiert.

Für unsere Zwecke liefert $\varphi_{\rm K}$ eine grobe, aber genügende Schätzung für $\varphi_{\rm m}$. Diese Schätzung entspricht, was die Grössenordnung und Sequenz betrifft, etwa jenen Winkeln $\Theta_1^{(2)}$ ³), die von *E. A. Braude* und Mitarbeitern aus der Intensitätsabnahme $\Delta \varepsilon_{\rm max}$ bei sterischer Hinderung der Koplanarität für diese Verbindungen gefunden worden sind⁵¹) (vgl. Tab. VII). Ausserdem wurden in der Tab. VII jene $\Delta \lambda_{\rm max}$ -Werte eingetragen, die sich aus den bekannten experimentellen Daten der entsprechenden Verbindungen abschätzen lassen. Schliesslich enthält die Tab. VII die Verhältnisse $\Delta \lambda_{\rm max}/\varphi_{\rm K}$ und $\Delta \lambda_{\rm max}/\Theta_1^{0}$ als eine erste Schätzung der Grössenordnung derjenigen Verschiebung der K-Bande, die sie durch eine Verdrillung um eine Winkeleinheit um die Bindung zwischen den Teilsystemen X und Y erleidet.

Der nachstehenden Diskussion wird die Annahme zu Grunde gelegt, dass in allen Verbindungen Übergänge auch zwischen nichtkoplanaren Konstellationen stets mit endlichen Übergangsmomenten erlaubt sein sollen. Da die Population der Konstellationen für die Verdrillungswinkel $\varphi < \varphi_{\rm K}$ entsprechend der Boltzmann'schen Verteilung mit kleiner werdendem $\varphi \ (\varphi \rightarrow 0)$ abnimmt, das Übergangsmoment $M_{\rm N \rightarrow V_1}$ aber zunimmt, wird es im Allgemeinen Konstellationen in einem bestimmten engen Winkelbereich mit dem Schwer-

⁵⁰) Die in Tab. VII angegebenen Werte für $\varphi_{\rm K}$ wurden jeweils auf die nächste Zehnereinheit gerundet, da die Winkel $\varphi_{\rm K}$ zum Teil sehr kritisch von den numerischen Parametern, die die Geometrie der Molekeln festlegen, und von den willkürlichen van der Waals-Radien abhängen.

⁵¹) Die Winkel Θ_1^0 (Definition siehe ²)³)) wurden zwar in Anlehnung an den weiter oben, für den Typus II postulierten Mechanismus berechnet, doch können sie, analog den Grössen φ_K als eine erste Orientierung über die Grössenordnung des Winkels φ_m gelten.

Verbindung	$\varphi_{\rm K}$	$\Theta^0_{f 1}$	$\Delta \lambda_{\max}$ in m μ	$\frac{\varDelta \lambda_{\max}}{\varphi_{\rm K}}$	$rac{arDelta\lambda_{ ext{max}}}{arDelta_1^0}$
2,4,6-Trimethyl-styrol 2-Methyl-diphenyl	$ \begin{array}{r} 40^{\circ} \\ 40^{\circ} \\ 40^{\circ} \\ 30^{\circ} \\ 30^{\circ} \\ 60^{\circ} \\ 50^{\circ} \end{array} $	$54^{0} {}^{3})$ $40^{0} {}^{3})^{53})$ 33^{0} $28^{0} {}^{3})$ $40^{0} {}^{3})$ $57^{0} {}^{3})$ $44^{0} {}^{3})$	$\begin{array}{r} -23 \ {}^{42}) \\ -17 \ {}^{2}) \\ -21 \ {}^{43}) \\ -7 \ {}^{2})^{3}) \\ -9 \ {}^{2})^{3}) \\ -18 \ {}^{2})^{3}) \\ \end{array}$	$ \begin{array}{c} -0,6\\ -0,4\\ -0,5\\ -0,2\\ -0,3$	-0,4 -0,4 -0,6 -0,3 -0,2 -0,3 -0,2 -0,3
2-Methyl-1-acetyl-cyclonexan 2-Methyl-1-acetyl-azulen (III) 1-Acetyl-guaj-azulen (IV)	30° 40°	49° 52°	$\approx 0.001)$ +15 +12	ightarrow 0 ightarrow ightar	$\approx 0 + 0,3 + 0,2$

Tabelle VII⁵²).

punkt φ_m geben, die für den grössten Teil der beobachtbaren Absorption verantwortlich sind.

Das hier als erste grobe Näherung verwendete Modell besteht darin, dass man den Winkel $\varphi_{\rm K}$, respektive den Winkel Θ_1^0 als Schätzung des Winkels $\varphi_{\rm m}$ betrachtet und annimmt, alle Molekeln befänden sich in dieser durch $\varphi_{\rm K}$ oder Θ_1^0 definierten Konstellation. Die Werte $\Delta \lambda_{\rm max}/\varphi_{\rm K}$ und $\Delta \lambda_{\rm max}/\Theta_1^0$ ergeben dann ein ungefähres Bild von der Empfindlichkeit des $N \rightarrow V_1$ -Überganges gegenüber der sterischen Einschränkung der Koplanarität in den hier behandelten Verbindungen⁵⁵).

Verwendet man nun ein einfaches LCAO-MO-Modell für die π -Elektronensysteme der Verbindungen X-Y, so lassen sich leicht jene Störungen δE_N und δE_V berechnen, die die Eigenwerte E_N und E_V in erster Ordnung erleiden, wenn man die Bindung zwischen den Teilsystemen X und Y um einen kleinen Winkel verdrillt. Man erhält in bekannter Weise⁵⁶):

$$\delta \mathbf{E}_{\mathbf{N}} = \left(2\sum_{j=1}^{n} \mathbf{b}_{j}^{\mathbf{N}} \mathbf{c}_{j\mathbf{X}} \mathbf{c}_{j\mathbf{Y}}\right) \delta \beta_{\mathbf{X}\mathbf{Y}} = 2 \mathbf{p}_{\mathbf{X}\mathbf{Y}}^{\mathbf{N}} \delta \beta_{\mathbf{X}\mathbf{Y}} ,$$

$$\delta \mathbf{E}_{\mathbf{V}} = \left(2\sum_{j=1}^{n} \mathbf{b}_{j}^{\mathbf{V}} \mathbf{c}_{j\mathbf{X}} \mathbf{c}_{j\mathbf{Y}}\right) \delta \beta_{\mathbf{X}\mathbf{Y}} = 2 \mathbf{p}_{\mathbf{X}\mathbf{Y}}^{\mathbf{V}} \delta \beta_{\mathbf{X}\mathbf{Y}} .$$
 (7)

Darin bedeuten: $c_{j X}$ und $c_{j Y}$ die Koeffizienten der beiden Zentren X und Y, zwischen denen die vereinigende Bindung liegt, definiert für jede LCAO-MO durch $\Phi_j = \sum_{r} c_{jr} \chi_r$;

⁵⁴) Berechnet aus Tab. 7 in ²), Verbindungen XXVI, XXVII, XXIX und XXX.

⁵⁵) Sowohl $\Delta \lambda_{\max}$ als auch $\Delta \varepsilon_{\max}$ hängen auf viel kompliziertere Art von φ und damit auch von φ_{m} ab. Es darf aber erwartet werden, dass dadurch die in den Werten $\Delta \lambda_{\max}/\varphi_{K}$ und $\Delta \lambda_{\max}/\Theta_{1}^{0}$ ausgedrückte Sequenz keine tiefgreifende, qualitative Änderung erleidet.

⁵⁶) C. A. Coulson & H. C. Longuet-Higgins, Proc. Roy. Soc. London A 191, 39 (1947).

⁵²) Die in Tab. VII enthaltenen Daten $\Delta \lambda_{\max}$ sind durchwegs Schätzungen, die sich aus den experimentell bestimmten Werten für λ_{\max} unter Einbeziehung von Korrekturen berechnen lassen, die die nicht sterisch bedingten Verschiebungen, welche die K-Bande unter dem Einfluss von Substituenten erleidet, berücksichtigen. Vgl. dazu ²)³)²⁹)³⁰.

⁵³) Berechnet aus dem beobachteten Wert von $\Delta \lambda_{\text{max}}$.

÷
5
5
۳.
ġ
لوم
Г
18
a.
ė
ē
<u> </u>
Б
d.
.д
ą.
ē
\geq
H
le.
5
E.
6
Ŋ.
Ĕ.
٩.
8
Ð
Σ.
ŝ
g
Be
5
5
- i.a
_
lel
Elel
π -Elel
π -Elel
π -Elel
II. π -Elel
III. π -Elel
VIII. π -Elel
e VIII. π -Elel
lle VIII. π -Elel
oelle VIII. π -Elel
abelle VIII. π -Elel
Fabelle VIII. π -Elel

$\frac{\varDelta\lambda_{\max}}{\Theta_1^0}$	- 0,4	- 0,4	- 0,6	- 0,3	0	+ 0,25	
$\frac{A\lambda_{\max}}{\varphi_{\mathbf{K}}}$	- 0,6	- 0,4	- 0,5	- 0,3	≈ 0,0.	+ 0,4	
h_{XY}	+ 0,264	+ 0,246	+ 0,190	$+$ 0,058 60) (+ 0,149)	+ 0,016	- 0,090	
dnungen Angeregter Zustand V ₁	ole <u>0,557</u> 0,400 0,557 0,400 0,500 0,441	1yle 0,518 0,409 0,516	ene 0,568 0,724 0,432 0,621 0,435	Acetophenone ^{0,517} 0,780 0,512 0,582 0,542 0,542	one und Aldehyde 0.288 0,489 0,565	ketone 0.559 (1.581 0.593 0.591 0.159 0.159 0.159 0.159	2018.
Bindungsor Grundzustand N	0,659 0,679 Styrr	Dipher	0.667 0.681 Stills	Benzaldehyde, 0,655 0,681 0,424 0,720 0,424	α, β -ungesättigte Ket 0, 13 0, 10	0,791 4,000 0,557 1-Azulyl- 0,888 0,588 0,583 0,882 0,882 0,883 0,883 0,680 0,571	Anmerkungen siehe Seiten 2017 und

2016

HELVETICA CHIMICA ACTA.

 $\delta \beta_{XY}$ die durch die Verdrillung der Bindung zwischen X und Y hervorgerufene Änderung in dem Bindungsintegral β_{XY} ; \mathbf{b}_{j}^{N} und \mathbf{b}_{j}^{V} die Besetzungszahlen der einzelnen MO's innerhalb des Grundzustandes N und des angeregten Zustands V₁ respektive; \mathbf{p}_{XY} die Bindungsordnung.

Die für die beobachtete Verschiebung der K-Bande ausschlaggebende Differenz $\delta E = \delta E_V - \delta E_N$ (vgl. (6)) beträgt nun:

$$\delta \mathbf{E} = \delta \mathbf{E}_{\mathbf{V}} - \delta \mathbf{E}_{\mathbf{N}} = \left(\mathbf{p}_{\mathbf{X}\mathbf{Y}}^{\mathbf{V}} - \mathbf{p}_{\mathbf{X}\mathbf{Y}}^{\mathbf{N}} \right) \, 2 \, \delta \beta_{\mathbf{X}\mathbf{Y}} \, . \tag{8}$$

Für eine konstante Änderung des Bindungsintegrals β_{XY} , entsprechend einem vorgegebenen Winkel φ , erhält man somit:

$$\delta \mathbf{E} \propto \Delta \mathbf{p}_{\mathbf{X}\mathbf{Y}}$$
, (9)

worin Δp_{XY} die Änderung der Bindungsordnung der Bindung zwischen den Teilsystemen X und Y beim Übergang vom Grundzustand zum angeregten Zustand bedeuten soll.

In der Tab. VIII sind in den ersten beiden Kolonnen für die Zustände N und V₁ der den Verbindungsklassen der Tab. VI zu Grunde liegenden π -Elektronensysteme die Bindungsordnungen p_{rs} angegeben. Die speziell interessierende Grösse Δp_{XY} findet sich in der dritten Kolonne, und die der Tab. VII entnommenen Werte für $\Delta \lambda_{\max} / \varphi_{K}$ und $\Delta \lambda_{\max} / \Theta_{1}^{0}$ stehen in der letzten Kolonne.

Wie ein Vergleich der Werte für Δp_{XY} und $\Delta \lambda_{max}/\varphi_K$ sowie für Δp_{XY} und $\Delta \lambda_{max}/\Theta_1^0$ (vgl. Fig. 6) zeigt, gehen die aus unserem Modell entnommenen Grössen und die aus den experimentellen Daten berechneten einander in grossen Zügen parallel, wobei insbesondere darauf hingewiesen sei, dass sowohl das Ausbleiben einer Verschiebung der K-Bande in den α, β -ungesättigten Ketonen, als auch insbesondere die bathochrome Verschiebung dieser Bande in der Reihe der 1-Azulyl-Ketone eine Erklärung innerhalb eines einzigen Mechanismus gefunden haben.

Anmerkungen:

1. Die für alle Verbindungen beobachtete Abnahme von ε_{\max} (bzw. von f) der K-Bande bei der sterischen Hinderung der Koplanarität von X und Y ist innerhalb des hier vorgeschlagenen Mechanismus sowohl auf die Änderung im Übergangsmoment $M_{N \to V_1}$ als auch auf die verringerte Population der um den Winkel φ_m gruppierten Konstellationen zurückzuführen. Über den Anteil der beiden Effekte an der gemessenen Abnahme $\Delta \varepsilon_{\max}$ kann im Rahmen der hier verwendeten Näherung nichts ausgesagt werden.

2. Obsehon die diesbezüglichen Berechnungen noch ausstehen, deuten theoretische Resultate von *B. Pullman & G. Berthier*⁵⁸) darauf hin, dass auch die bis jetzt einzig bekannt gewesenen bathochromen Verschiebungen durch sterische Hinderung der Koplanarität eines π -Elektronensystems in der Reihe der Thiocarbocyanine⁵⁹) ebenfalls im Rahmen des vorliegenden Erklärungsversuches gedeutet werden können.

⁵⁷) Die Eigenwerte und Bindungsordnungen des Grundzustandes entstammen für Styrol, Diphenyl und Stilben: *B. Pullman & A. Pullman*, Les Théories Electroniques de la Chimie Organique, Paris 1952. Werte für Benzaldehyd resp. Acetophenon und 1-Azulylketone aus ¹⁸). Für die Carbonylgruppe wurden jeweils die folgenden Parameter verwendet: Sauerstoff: $\alpha_{\rm O} = \alpha + 2\beta$, Kohlenstoff: $\alpha_{\rm C} = \alpha$, Bindungsintegral: $\beta_{\rm CO} = 2 \sqrt{\beta}$.

⁵⁸) B. Pullman & G. Berthier, C.r. hebd. séances Acad. Sci. 229, 717 (1949).

⁵⁹) L. G. S. Brooker, F. L. White, D. W. Heseltine, G. H. Keyes, S. G. Dent & E. J. Lares, J. photogr. Sci. 1, 173 (1953).

3. Es sei bemerkt, dass man aus der Tatsache, dass die langwelligste Bande des Azulens eine hypsochrome Verschiebung erleidet, wenn man es in Stellung 1 mit einer Acetylgruppe substituiert, nicht unbedingt den Schluss ziehen kann, dass dann durch eine Beeinträchtigung der Konjugation eine entsprechende bathochrome Verschiebung der K-Bande die Folge sein müsse. Dies ist darauf zurückzuführen, dass z. B. im Rahmen der MO-Theorie der von dem Winkel φ unabhängige induktive (+ I)-Effekt des Substituenten für die hypsochrome Verschiebung verantwortlich gemacht wird²¹)²⁹, während in erster Näherung der reine, von keinerlei Ladungsdrift begleitete Konjugations-Effekt für Substituenten in beliebiger Stellung am Azulenkern stets von einer bathochromen Verschiebung begleitet ist.

Zusammenfassung.

Die im vorangehenden Abschnitt abgeleitete Deutung des spektroskopischen Verhaltens von in ihrer Konjugation sterisch gehinderten Verbindungen, lässt sich wie folgt zusammenfassen:

1. Die Erfahrung zeigt, dass die sterische Hinderung der Koplanarität eines mesomeren Systems vom Typus X—Y (wobei X und Y zwei Teilsysteme seien, die über eine Bindung konjugativ verbunden sind) stets von zwei spektroskopischen Effekten begleitet ist:

a) von einer Abnahme der Intensität der K-Bande (Abnahme in ε_{\max} bzw. in f);

b) von einer Verschiebung der K-Bande relativ zur Lage, die sie in der entsprechenden, sterisch nicht gehinderten Verbindung einnimmt, wobei diese Verschiebung, gekennzeichnet durch $\Delta \lambda_{\max}$, je nach Verbindungstypus bathochrom, null oder hypsochrom sein kann.

2. Verwirft man die bisher als Diskussionsgrundlage oft verwendete Regel, dass Verlust an Koplanarität unbedingt von einer hypsochromen Verschiebung der K-Bande begleitet sein muss, so kann man sich zunächst das nebenstehende, den beobachteten, sterisch bedingten Verschiebungen entsprechende Bild machen.

Dreht man die beiden Teilsysteme X und Y einer gegebenen Verbindung X—Y um einen solchen Winkel φ aus der gemeinsamen Ebene der koplanaren Konstellation, dass der Grundzustand N um den Betrag δE_N gehoben wird (vgl. Seite 2010), so kann, bei gleichem Verdrillungswinkel φ , der angeregte Zustand V₁ um Beträge δE_{V_1} gehoben werden, die nun nicht unbedingt grösser als δE_N sein müssen, sondern die je nach Verbindungstyp grösser, gleich oder kleiner als δE_N ausfallen können.

⁶⁰) Der kleinere der beiden $\varDelta p_{XY}$ -Werte und die für den angeregten Zustand V_1 angegebene Verteilung der Bindungsordnungen gelten für einen Übergang, der entsprechend

polarisiert ist. Der grössere Wert für $\varDelta p_{XY}$ bezieht sich auf einen, innerhalb des gewählten MO-Modells energiemässig praktisch identischen Übergang, dessen Polarisations-Richtung senkrecht zu jener des oben angegebenen Überganges steht.

Qualitativ ist das unterschiedliche Verhalten (hypsochrome, keine oder bathochrome Verschiebung) darauf zurückzuführen, dass der Doppelbindungs-Charakter (resp. die Bindungsordnung) der zu verdrehenden Bindung in den verschiedenen Verbindungen im angeregten Zustand grösser, gleich oder kleiner als im Grundzustand sein kann.

Definiert man die Grösse Δp_{XY} als die Differenz der Bindungsordnung p_{XV}^{v} der Bindung zwischen X und Y im angeregten Zustand V_1 und der Bindungsordnung p_{XY}^{N} der Bindung zwischen X und Y im Grundzustand (vgl. Scite 2015), so sollten positiven Δp_{XY} -Werten hypsochrome, negativen Δp_{XY} -Werten aber bathochrome Verschiebungen der jeweiligen K-Bande entsprechen.

3. Eine grobe, semiquantitative Berechnung der Differenzen Δp_{XY} für eine Reihe von Verbindungstypen und ihr Vergleich mit den experimentell gefundenen relativen Verschiebungen $\Delta \lambda_{\max}/\varphi_{K}$ resp. $\Delta \lambda_{\max}/\Theta_{1}^{0}$ zeigt, wie aus der Fig. 6 ersichtlich, den erwarteten Zusammenhang. Innerhalb der durch die verwendete Methode gesteekten Grenzen besteht somit die Möglichkeit, Erwartungswerte für die sterisch bedingten Verschiebungen der K-Bande zu berechnen.

4. Die in allen Fällen beobachtete Abnahme der Intensität der K-Bande in den sterisch gehinderten Verbindungen ist sowohl auf die Abnahme des Übergangsmomentes $M_{N \to V_1}$ mit wachsendem Verdrehungswinkel φ als auch auf die Häufigkeit, mit der Konstellationen von gegebenem Winkel φ auftreten, zurückzuführen.

Wie die Fig. 7 schematisch zeigt, nimmt das Übergangsmoment $(M'_{N\to V_i})$ mit wachsendem φ ab, um bei orthogonaler Stellung der π -Elektronensysteme auf den Wert Null abzufallen. Das die freie gegenseitige Drehbarkeit der Teilsysteme X und Y einschränkende Potential $V(\varphi)$ steigt, ausgehend vom Kontaktwinkel φ_K (vgl. Seite 2015), nach kleineren φ -Werten stark an (sterische Hinderung) und nach

Zusammenhang zwischen den beobachteten, relativen Verschiebungen $\Delta \lambda_{\max}/\varphi_{\mathbf{K}}$ und $\Delta \lambda_{\max}/\varphi_1$ und den berechneten Bindungsordnungs-Differenzen $\Delta p_{\mathbf{XY}}$. Der Durchmesser der eingezeichneten Kreise entspricht *nicht* einer experimentell bedingten Streuung.

 $V(\varphi)$ = Die freie Rotation einschränkendes Potential.

grösseren nimmt es, entsprechend dem damit verbundenen Verlust an Delokalisierungs-Energie, um wenige kcal zu. Die dem Potential $V(\varphi)$ entsprechende Häufigkeitsverteilung $P(\varphi)$ weist an der Stelle φ_{K} ihr Maximum auf und fällt nach abnehmenden Winkelwerten schnell, nach wachsenden Werten weniger schnell ab.

Ausschlaggebend für die Intensität der beobachteten K-Bande ist nun das Produkt von $M'_{N \to V_1}(\varphi) \cdot P(\varphi)$, indem jede durch den Winkel φ gekennzeichnete Konstellation proportional dem ihr zukommenden Übergangsmoment und ihrer Häufigkeit entsprechend zur Absorption beiträgt. Das Verhältnis der Oszillator-Stärke f_K der K-Bande in der sterisch gehinderten Verbindung zur Oszillator-Stärke in der sterisch ungehinderten Verbindung ist dann gleich dem Verhältnis der Flächen unter der Kurve $M'_{N \to V_1}(\varphi) \cdot P(\varphi)$ zur Fläche unter der Kurve $P(\varphi)$.

Herrn Prof. Dr. Pl. A. Plattner möchten wir für die Überlassung der wertvollen Präparate unseren herzlichsten Dank aussprechen.

SUMMARY.

The absorption spectra of 1-acetylazulene, 1-methyl-3-acetylazulene, 2-methyl-1-acetylazulene, 3-acetylguayazulene, 3-benzoylguayazulene, 1,3-diacetylazulene and of 2-methyl-1,3-diacetylazulene have been determined.

Steric inhibition of coplanarity in the molecule of the 1-azulylketones is accompanied, in contrast to what is usually observed, by a *bathochromic* shift of the K-band in the spectrum.

This observation indicates that some of the assumptions implied in a classification of the steric effects in electronic spectra into two types⁴⁵) are unwarranted. A simple molecular orbital model results, however, in a unified theory which is also, on a semiquantitative level, in reasonable agreement with experimental results.

> Organisch-chemisches Laboratorium der Eidg. Technischen Hochschule, Zürich.